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Given p or c, a send-greedy heuristic chooses each iteration's decision randomly from among those decisions resulting in 
objective value improvements either within p~ of the best improvement or among the c best improvements. In the context of 
vehicle routing, we empirically compare the single use of a greedy heuristic with repeated use of a semi-greedy heuristic. 

heuristic solution • vehicle routing 

1. Introduction 

The importance of heuristics is well established 
in the practice and theory of oper ,~ns  research. 
A heuristic frequently provides a suboptimal solu- 
tion that is acceptable with respect to some crite- 
rion such as worst case error, asymptotic error, or 
average error in a well designed empirical test. 
Included among the ways to improve the perfor- 
mance of a heuristic are: 
- Use of several heuristics. Instead of using just 

one heuristic, several different heuristics may 
be employed to generate serveral suboptimal 
solutions, .with the best chosen for implementa- 
tion. For example, in solving a vehicle routing 
problem, one could employ both the savings 
heuristic of Clarke and Wright [3] and the 
sweep heuristic of Giilett and Miller [4]. 

- Use of several mathematical functions to govern 
the heuristic. The decision made at each itera- 
tion of a heuristic often depends upon some 
mathematical function involving the problem's 
data. Instead of using just one function of the 
data, several different functions may be em- 
ployed to generate several suboptimal solutions, 
with the best chosen for implementation. Balas 
and Ha [1] examined thi~ approach [or the set 
covering problem. The classic greedy heuristic 

for the set covering problem adds at iteration k 
the column that has the lowest ratio cj/nj, 
where cj is the cost associated with the column 
j and nj is the number of as yet uncovered 
rows that would be covered if column j were 
added to the current partial cover. Balas and 
Ha reported the results of empirical tests not 
only of a heuristic that used the ratio cJn j  but 
also of heuristics that used the ratios c ~  
(log2nj), cff(n~ log2n~), and c J ( n j  log nj). 

- Reverting to a partial solution and reapplying the 
heuristic. After applying a heuristic to obtain a 
suboptimal solution, it is sometimes possible to 
revert to a partial solution and then reappiy the 
heuristic to obtain a different suboptimal solu- 
tion. After this is done several times, the best of 
the suboptimal solutions can be implemented. 
Balas and Ho also examined this approach for 
the set covering problem. They first used one of 
the greedy heuristics described above to obtain 
a cover. Then they considered the columns in 
the order of their inclusion into the cover and 
removed from the cover all columns that 
covered at least one row that was covered more 
than once. Starting from the resulting partial 
cover, they then completed the cover using the 
greedy heuristic. 

- Perturbing the data and reapplying the heuristic. 
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Instead of applying the heuristic to only the 
original data, the heuristic can also be applied 
to several minor perturbations of the data. The 
best of the suboptimal solutions obtained can 
then be implemented. To improve the perfor- 
mance of a heuristic for a vehicle routing prob- 
lem, Beltrami and Bodia [2] examined the data 
perturbation obtained by increasing the dis- 
tance between the depot and one or more loca- 
tions. (There is no apparent need for restricting 
the distance perturbation to only increases or to 
changes in the distances involving the depot; 
Section 2 contains further discussion of this.) 

- U s e  o f  randomization within the heuristic. 
Randomization can be used within a heuristic 
in several ways. One way is possible when the 
heuristic (e.g., the sweep heuristic of Gillet and 
Miller for a vehicle routing problem) has an 
arbitrary starting point or 'seed'. By randomly 
selecting the seed, several suboptimal solutions 
can be generated, with the best chosen for 
implementation. Golden [5] applied such a 
strategy to the travelling salesman problem. 
Another way to use randomization within a 
heuristic is simulated annealing, as illustrated 
by its application to the travelling salesman 
problem by Kirkpatrick: Gelatt and Vecchi [9]. 
They obtained a heuristic whose repeated appli- 
cation leads to a variety of suboptimal tours 
because an iteration may randomly decide to 
rearrange the tour in a manner resulting in a 
temporary increase in the tour's length. A final 
example of the use of randomization within a 
heuristic is one that is most similar to what we 
present in this paper. In the context of the 
capacitated Chinese postman problem, Golden, 
DeArmon and Baker [6] experimented with re- 
peated applications of a heuristic that selected 
each iteration!s course of action by randomly 
selecting from among the top three alternatives. 
They reported only minor improvement in the 
objective value. 
In this paper, we present an approach whose 

use of randomization within a heuristic is similar 
to, but more general than that used by, Golden, 
DeArmon and Baker. The approach is an alterna- 
tive to a greedy heuristic, that is, a heuristic that, 
at each iteration, chooses the decision resulting in 
the best improvement of the objective value dur- 
ing the current iteration. In contrast to a greedy 
heuristic, consider the following definitions of two 

types of what we call a semi-greedy heuristic: 
- A percentage-based semi-greedy heuristic with 

parameter p. For a specified value of p, the 
decision at each iteration is chosen randomly 
from among those decisions resulting in objec- 
tive value improvements within p~  of the best 
possible improvemenL 

- A cardinality.based semi-greedy heuristic with 
parameter c. For a ~,pecified --:~u¢ of c, the 
decision at each iteration is chosen randomly 
from among those decisions resulting in objec- 
tive value improvements among the c best im- 
provements. 
To illustrate, suppose that at so~e iteration of 

a heuristic, there exist seven alternative decisions 
that result in objective value improvements of 100, 
98, 95, 91, 89, 73 and 58. Whereas a greedy 
heuristic automatically chooses the first alterna- 
tive, a percentage-based semi-greedy heuristic with 
parameter p -  10 randomly chooses the decision 
from among the first four alternatives (since they 
are all within 10~ of the best alternative), and a 
cardinality-based semi-greedy heuristic with para- 
meter c -  2 randomly chooses the decision from 
among the first two alternatives. Observe that 
setting p = 0 and c = 1 results in a semi-greedy 
heuristic behaving like a greedy heuristic. 

Consider the following strategy for obtaining a 
heuristic solution to a problem: Specify values for 
p (or c) and m, perform m repetitions of a 
percentage based-- (or cardinality-based) semi- 
greedy heuristic with parameter p (or c), and 
implement the best of the suboptimal sohz~ions 
obtained during the m repetitions. 

Two questions arise with respect to the above 
strategy: 
- For m fixed, what is the 'best' value for p (or 

c)? 
- For p fixed, what is the trade-off as m in- 

creases between the 'benefit' obtained by an 
improved objective value versus the 'cost' of 
increased computational effort? 
Most of the remainder of this paper presents 

empirically-based answers to these questions in 
the context of the capacitated vehicle routing 
problem. 

2. A semi-greedy heuristic for the capacitated 
vehicle routing problem 

In this paper, we use the terminology capaci- 
tated vehicle routing problem to describe a prob- 
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lem with the following characteristics: 
- There exist N + 1 locations having indices 0, 1, 

2, . . . ,  N. 
- Location 0 is a depot that houses a fleet of 

homogeneous vehicles; in particular, each 
vehicle has the same capacity C (weight or 
volume). 

- Location i demands a single vehicle to make a 
delivery of size a~. (Alternatively, all demands 
may be pick-ups.) 

- The distance between location i and location j 
is d~j. 

- A feasible vehicle route is a sequence of loca- 
tions starting and ending at the depot for which 
the summation of a~ over the locations serviced 
by the route does not exceed C. 

- The problem is to determine a set of feasible 
vehicle routes that minimizes the total distance 
travelled while servicing all demands. 
A well-known and frequently used heuristic for 

the capacitated vehicle routing problem is the 
savings heuristic of Clarke and Wright (hereafter 
referred to as the C-W heuristic). The following is 
a summary of the steps of the C-W heuristic: 
Initialization steps. Initialization consists of the 
following three steps: 

(1) Begin with the N trivial routes obtained by 
having each location serviced by a different vehicle 
that simply makes a round trip between the depot 
and the location. 

(2) For i ~ 0, j ~ 0 and i ~ j ,  compute 

S~j = d~0 + d0j - d~j. 

S~j is the savings that results if the route that ends 
with a vehicle travelling from location i to the 
depot is combined with the route that begins with 
a vehi~'.le travelling from the depot to location j. 

(3) Sort by non-ascending order the savings 
S~j. 
lterative step. Suppose S~j is the maximum savings 
remaining on the list of savings. If combining the 
two routes would result in the total size of the 
single route's deliveries exceeding the vehicle 
capacity, then do not combine the routes but 
delete S~j from the savin~s list. Otherwise, corn* 
bine the two routes and delete from the savings 
list the following: (a) S~k for all k (~ince there no 
longer exists a route that ends with travel from 
location i to the depot), (b) Ski for all j (since 
there no longer exists a route that begins with 
travel from the depot to location j),  and (c) Sk,.k~ 

where k I and k 2 are, respectively, the last and 
first locations on the combined route (since the 
route that ends with travel from location kl to the 
depot and the route that begins with travel from 
the depot to location k 2 is now one and the same 
route). 
Termination rule. Terminate execution when the 
remaining entries on the savings list all have nega- 
tive values or when the savings list is empty. 

Golden, Magnanti and Nguyen [7] pointed out 
that a major flaw in the C-W heuristic is that 
once a location is assigned to a route, it cannot be 
subsequently reassigned to another route. At a 
particular iteration of the algorithm, there may be 
little difference among the entry at the top of the 
savings list and several of the immediately follow- 
ing entries. Despit¢~ the potentially small differ- 
ences among the entries at or near the top of the 
savings list, the C-W heuristic greedily and irrevo- 
cably selects the maximum savings. To introduce 
variety into the C-W heuristic, Golden, Magnanti 
and Nguyen replaced the expression for savings 
with 

S~j = di0 + do j -  adij, 

where a is a so-called route shape parameter. 
Golden, Magnanti and Nguyen conducted em- 
pirical experiments in which, instead of using the 
C-W heuristic once, they repeated the modified 
C-W heuristic for several values of a in the 
interval [0,2] and selected the best. The variety 
introduced by using a rouie shape p~rameter re- 
sulted in. less expensive routes. However, one 
drawba,:k of this approach is that every time a is 
changed, the values of S~j change and the savings 
list r:lust be resorted. Since sorting time is the 
maior component of the C-W heuristic's execu- 
ti¢,n time, it would be desirable to introduce variety 
into the C-W heuristic without having to resort 
the savings list. 

Another means of introducing variety into the 
C-W heuristic is through use of data perturba- 
tion, as suggested by Beltrami and Bodin. They 
restricted the data perturbation to increases in the 
distances between the depot and one or more 
locations. A generalization of this would be to 
obtain alternative realizations of the data by per- 
turbing each distance d~j by selecting it from a 
uniform distribution either on the interval [ (1-  
~)d~j, (1 + c)d,j] or the interval [d~j- c, dij + c], 
where c is a small constant. Like the route shape 
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parameter approach of Golden, Magnanti and 
Nguyen, the data perturbation approach of Bel- 
trami and Bodin, as well as its generalization, 
suffers from the drawback that every data per- 
turbation requires a resorting of the savings fist. 

We can achieve the goal of not having to resort 
the savings fist b)using a semi-greedy heuristic. 
Once the savings have been computed (using S~j - 
d,o + d0j -  d~j) and sorted, we can perform any 
desired number of repetitions o f  a semi-greeO~ 

D(m, p): 

where l" I denotes absolute value. 
(This assumes minimization; the  
numerator's terms should be re- 
versed if maximizing.) 
The percentage deviation of the best 
objective value obtained after m 
repetitions of the percentage-based 
semi-greedy heuristic with specific 
parameter p in comparison with the 
best objective value obtained after 

heuristic without having to resort the saving~ list. m repetitions of eve~ percentage.. 
Working with the identical sorted savings list, 
every repetition of a semi-greedy version of the 
C-W heuristic would at each iteration decide 
which two routes to combine by randomly selec- 
ting from among those savings within p~  of the 
maximum savings (if using a percentage-based 
semi-greedy heuristic) or from among those sav- 
ings among the c largest (if using a cardinality- 
based semi-greedy heuristic). 

3. Notation 

To describe the empirical experiments we con- 
ducted using semi-greedy heuristics, we need the 
following notation for quantities obtained when a 
percentage-based semi-greedy heuristic is applied 
to a specific set of data: 
P: A set of alternative values for p, the 

semi-greedy heuristic's percentage 
parameter. It will always be the c~se 
that 0 ¢ P, so that one of the alter- 
native semi-greedy heuristics is al- 
way,~ the greedy heuristic. 

V(m, p): The best objective value obtained 
after m repetitions of a percentage- 
based semi-greedy heuristic with 
parameter p, where p ~ P. 

V(m, P): The minimum of It(m, p) over p 
P. 

R(m, p): The percentage reduction achieved 
by the best objective value obtained 
after m repetitions of a percentage- 
b~sed semi-greedy heuristic with 
pt~rameter p in comparison with the 
objective value obtained from m 
repetitions of a greedy heuristic 
where ties are randomly broken. 
Formally, R (m, p) = { [ V(m, 0) - 
V(m, p)]/I V(m, 0) i} x 100%, 

based semi-greedy heuristic for 
every parameter p ~ P. Formally, 
D(m, p)--{[V(m, p ) -  V(m, P)I /  
I V(m, P) I } × 100~. (This assumes 
minimization; the numerator's terms 
should be reversed if maximizing.) 

N(m, p): A 'counter' that equals 100¢g if 
parameter p results in the best ob- 
jective value over all members of the 
set P and equals 0¢$ otherwise. For- 
mally, 3/(m, p) - 100~ if V(m, p) 
ffi V(m, P) and equals 0~ other- 
wise. 

The above notation for R (m, p), D(m, p) and 
N(m, p) apply only to a single data set. To de- 
note the means of these quantities ove]r several 
data sets, we place a bar over the notation (e.g., 
R( ) ,  D() ,  and N()). Also, to obtain equ/valent 
notation for a cardinality-based semi-greedy heur- 
istic, we replace p, p = 0, and P everywhere by c, 
c = 1, and C, where C is a set of alternative values 
for the cardinality parameter. 

4. Empirical results 

To gain computational experience with a semi- 
greedy C-W heuristic, we generated random 
vehicle routing problems characterized by the fol- 
lowing three attributes: 
- Number of locations. The number cf locations 

(excluding the depot) was either 10, 25, 50, 75 
or 100~ 'the locations were randomly placed on 
the integer coordinates of a 1000 × 1000 grid. 
Choice of distance metric. Distances between 
every pair of locations (including the depot) 
were computed using either the Euclidean met- 
tic or the rectangular metric. 
Noise factor applied to distances. The actual 
distances computed using the metric were dis- 
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t.orted by multiplying each distan~,.'e by a di~- 
tinct value selected from ~ uniform distribution 
on the interval (1 - c, 1 + c), where c is a 'noise' 
factor satisfying 0 ¢~ < 1. Observe that setting 

= 0 produces a symmetric distance matrix and 
setting ~ = 0.99 is equivalent to stating that the 
distances have little relationship to the lo- 
cations' grid-coordinates. 
For any combination of the above three attri- 

butes, the service requirement for each location 
was selected using a uniform distribution over the 
integers in the interval [1, 999]. Also, a common 
vehicle capacity was selected using a uniform dis- 
tribution over the integers in an interval [(M + 
S)/2, S], where M and S respectively denote the 
maximum and the sum of the locations' service 
requirements. 

Space limitations preclude a detailed summary 
of every combination of the above attributes we 
considered. Tables 1 and 2 display a representa- 
tive sample of our empirical results. For a per- 
centage-ba_sed semi-greedy C - W  _ heuristic, Table 1 
displays R(m, p), D(m, p), N(m, p) for 1 ~ m 
~< 50 and p an element of the set P = 
{0, 1, 2 , . . . ,  8 }, where the mean was taken over 50 
data gets with the following attributes: (a) the 
number of locations was 50, (b) distances were 
computed using the Euclidean metric, and (c) each 
distance was distorted by using a noise factor of 

ffi 0J .  Table 2 displays the analogous values ob- 
tained by appiyiag t~ the ident~ca! data sets a 
cardinality-based semi-greedy C - W  heuristic with 
c an element of  the set C = { 1, 2, 3, 4, ~ }. 

To illustrate the interpretation of Table 1, con- 
sider the triple in the row corresponding to m = 50 
and the column corresponding to p -  4%. The 
triple (5.0, 1.2, 24) indicates that 50 repetitions of 
a percentage-based semi-greedy C - W  h~aristic 
with p - 4% yielded the following results: (a) a 5% 
mean reduction in the objective value in compari- 
son with the objective value obtained from the 
greedy C-W heuristic, (b) a 1.2~ mean deviation 
from the best of the objective values obtained over 
all the semi-greedy C-W heuristics with p -  
0, 1, . . . ,  8, (c) a 24% mean occurrence rate for the 
event that p = 4~ produced the best of the objec- 
tive values among those objective values obtained 
using the other eight values of p. 

Examination of Table 1 leads to the following 
observations and conjecturcs about a percentage- 
based semi-greedy C-W heuristic: 

(1) For m - 1, R(m, p) and N(m, p) attain 
maximums at p-O, and D(m, p)  attains a 
minimum at p - 0. Consequently, if only a single 
repetition is to be performed, the, greedy C-W 
heuristic performs better than any percentage- 
based semi-greedy C-W heuristic. 

(2) For the number of repetitions fixed at a 

Table 1 
Summary for a percentage-based semi-greedy heuristic (each triple of numbers represents, respectively, R(m, p), D(m,  p) and 
~(m, p~) 
m p = o z  p = 1~  p = 2~t p = 3~  

]--(0.0, 3.0, 18) ( -0.6, 3.4, 10) (-0.8, 3.7, 18) ( -  1.4, 4.4, 
2 (0.0, 3.1'3, 6) - (0.7, 3.0, 22) (0.5, 3.2, 20) (0.5, 3.2, 
3 (0.0, 4.0, 12) (0.9, 3.0, 22) (0.8, 3.0, 14) (0.7, 3.1, 
4 (0.0, 4.3, 10) (1.5, 2.7, 20) (1.8, 2.3, !6) (1.6, 2.5, 
5 '(0.0, 4.8, 8) (1.7, 2.9, 16) (2.2, 2.3, 20) (2.2, 2.4, 20) 
6 (0.0, 4.9, 8) (2.0, 2.8, 16) (2.6, 2.1, 16) (2.5, 2.2, 22) 
7 (0.0, 5.1, 8) (2.2, 2.6, 18) (2.7, 2.1, 16) (2.7, 2.2, 22) 
8 (0.0, 5.2, 6) (2.3, 2.6, 18) (2.8, 2.1, 16) (2.8, 2.1, 20) 
9 (0.0, 5.3, 6) (2.4, 2.7, 16) (3.0, 2.1, 18) (3.1, 2.0, 20) 
10(0.0, 5.4, 6) (2.5, 2.6, 14) (3.1, 2.0, 16) (3.2, 1.9, 20) 
15(0.0, 5.7, 6) (2.7, 2.7, 10) 0.6, 1.8, 20) (3.7, 1.7, 18) 
20(0.0, 5.8, 6) (2.9, 2.7, 12) (3.7, 1.8, 12) (3.9, 1.6, 20) 
25(0.0, 6.0, 4) (3.0, 2.8, 14) (4.0, 1.6, 8) (4.2, 1.4, 22) 
30(0.0, 6.2, 2) (3.1, 2.9, 12) (4.3, 1.5, 14) (4.5, 1.3, 20) 
35(0.0, 6.4, O) (3.1, 3.1, 6) (4.4, !.6, I0) (4.7, 1.3, 26~ 
40(0.0, 6.5, O) (3.2, 3.0, 4) (4.5, 1.6, 8) (4.8, 1.3, 30) 
45(0.0, 6.6, 0) (3.2, 3.1, 2) (4.6, 1.6, 8) (4.8, 1.4, 28) 
50(0.0, 6.7, 0) (3.2, 3.2, 2) (4.7, 1.5, 12) (4.9, 1.3, 28) 

p = 4% p = 5% p = 6% p --- 7%- p = 8% 

18) ( - 2.7, 5.7, 10) ( - 2.I, 5.0, 16) ( - 3.9, 7.0, 4) ( - 5.3, 8.3, 4) ( - 6.3, 9.4, 2) 
20) ( - 0.4, 4.2, 14) (-0.3,  4.2, 10) (2.0, 5.8, 4) ( - 3.0, 6.8, 4) ( - 4.0, 7.8, 2) 
18) (0.3,3.6,16) (0.1,3.8.8) ( -1 .4 ,5 .3 .4 ) ( -2 .9 ,6 .9 ,2 ) ( -2 .6 ,6 .5 ,4 )  
18) (1.1,3.1,16) (0.8, 3.3,12) ( - 0.5, 4.% 4) ( - 2.0, 6.2, 0) ( -1.8,  6.1, 4) 

(2.2, 2.4, 18) (1.2, 3.4, 8) (0.1, 4.6, 6) ( - 1.4, 6.2, 2) ( - 1.6, 6.4, 2) 
(2.4,2.3,20) (1.6, 3.2, 6) (0.5, 4.2, 8) ( -  0.7, 5.5, 2) (- 1.2, 6.0, 2) 
(2.6, 2.3, 18) (1.8, 3.1, 4) (0.9, 4.0, 12I -  0.3, 5.2, 2) ( -0.8, 5.8, 2) 
(2.7, 2.2, 20) (1.8, 3.2, 4) (1.4, 3.6, 14) 
(2.b, 2.3, 20) (2.0, 3.2, 4) (1.5, 3.7, 12) 
(3.0, 2.1, 22) (2.0, 3.1, 4) (1.6, 3.6, 14) 
(3.8, 1.6, 22) (2.7, 2.7, 8) (2.3, 3.1, 14) 
(4.0, 1.5, 26) (3.0, 2.6, 8) (2.7, 2.8, 14) 
(4.3, 1.4, 28) (3.4, 2.3, 10) (3.0, 2.6, 10) 
(4.5, 1.3, 30) (3.6, 2.3, 10) (3.2, 2.8, 8) 
(4,7, 1,3, 30) (3.8, 2.3, 12) (3.5, 2.6, 14) (~,4, 3.8, 2) 
(4.8, 1.3, 26) (4.2, 2.0, 18) (3.7, 2.5, 14) (2.8, 3.4, 2) 
(5.0, 1.2, 28) (4.2, 2.0, 16) 0.9, 2.4, 16) (2.9, 3.4, 4) 
(5.0, 1.2, 24) (4.4, 1.9, 16) (4.0, 2.4, 16) (3.1, 3.2, 4) 

(0.0, 5.1, 2) ( -0.4, 5.5, 2) 
(0.2, 5.0, 4) ( -0.4,  5.6, 2) 
(0.4, 4.8, 4) ( -0.3, 5.6, 2) 
(1.2, 4.4, 4) (0.2, 5.3, 2) 
(1.8, 3.8, 4) (0.7, 5.0, 2) 
(2.2, 3.5, 4) (1.0, 4.8, 2) 
(2.3, 3.7, 4) (1.6, 4.4, 2) 

(2.0, 4.2, o) 

(2.0, 4.2, O) 
(2.1,4.3, O) 
(2.4, 4.0, O) 
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Table 2 
Summary. for a cardinality-based semi-greedy heuristic (each triple of numbers represents, respectively, R(m, c), 
N(m,c)) 

July 1987 

m 

D(m, c) and 

n: c = l  c=2  c=3  c = 4  c=5  

1 (0.0, 0.9, 76) ( -4.1, 4.9, 20) ( - 7.3, 8.2, 0) ( - 12.0, 13.0, 4) ( - 16.0, 17.0, 0) 
2 (0,0, 1.6, 60) ( -  1.8, 3.3, 28) ( -4.7, 6.3, 8) ( - 10.2, 11.8, 4) ( -  12.5, 14.2, 0) 
3 (0,0, 1.8, 54) ( -0 .8 ,  2.5, 32) (-4.2,  5.9, 10) (-8.5,  10.4, 4) ( -  11.0, 12.9, 0) 
4 (0,0, 2.2, 46) (0.0, 2.1, 36) ( -  3.2, 5.2, 12) ( -  7.9, 10.1, 6) ( -  10.2, 12.~, 0) 
5 (0.0, 2.2, 44) (0.3, 1.8, 36) (-2.3,  4.4, 14) (-7.3,  9.6, 6) ( -9 .4 ,  11.6, 0) 
6 (0.0, 2.2, 42) (0.5, 1.6, 38) (-2.0,  4.1, 16~ (-6.8 ,  9.1, 6) ( -8 .8 ,  11.1, 0) 
7 (0.0, 2.4, 40) (0.8, 1.4, 42) ( - 1.5, 3.8, 16) ( - 6.4, 8.8, 4) ( - 8,4, 10.9, 0) 
8 (0.0, 2.5, 38) (1.0, 1.4, 44) ( - 1.1, 3.5, 14) ( - 5.8, 8.3, 4) ( - 8.0, 10.6, 0) 
9 (0.0, 2.7, 34) (1.4, 1.2, 50) ( - 1.0, 3.5, 12) ( - 5.3, 8~9, 4) ( - 7.6, 10.3, 0) 

10 (0.0, 2.8, 30) (1.4, 1.2, 54) (-0.8,  3.4, 12) (-4.9,  7.'/, 4) ( -7 .4 ,  10.2, 0) 
15 (0.0, 3.1, 26) (2.2, 0.8, 60) (-0.2,  3.2, 12) (-3.6,  6.8, 2) ( -6 .7 ,  9.9, 0) 
20 (0,0, 3.3, 24) (2.4, 0.6, 62) (0.2, 3.0, 10) ( -  3.2, 6.5, 4) ( -  6.2, 9.6, 0) 
25 (0.0, 3.5, 24) (2.7, 0.6, 64) (0.5, 2.9, 12) ( -  2.5, 6.0, 0) ( - 6.0, 9.6, 0) 
30 (0,0, 3.6, 22) (2.8, 0.5, 66) (0.8, 2.6, 12) ( -  2.4, 5.9, 0) ( -  5.6, 9.2, 0) 
35 (0.0, 3.7, 20) (2.9, 0.5, 64) (1.1, 2.4, 16) ( - 2.2, 5.9, 0) ( - 5.5, 9.2, 0) 
40 (0.0, 3.8, 18) (3.1, 0.5, 68) (1.2, 2.5, 14) ( -2.2, 5.9, 0) ( -  5.1, 9.0, 0) 
45 (0.0, 3.9, 18) (3.2, 0.5, 68) (1.3, 2.4, 14) ( -2.0, 5.8, 0) ( -4.9, 8.8, 0) 
50 (0.0, 4.0, 16) (3.3, 0.4, 72) (1.4, 2.3, 12) ( -  1.9, 5.8, 0) ( -4 .7 ,  8.7, 0) 

value m>_-2, R(m, p), D(m, p) and N(m, p) 
attain optimal values at a value of p greater than 
0 but less than the maximum value in P. For 
example, for m - 20, the optimal value of p is 4~. 
• (3)As m increases, the optimal value of p 
increases. (There is sufficient evidence to conclude 
whether, as m increases, the optimal value of p 
continues to increase or approaches an asymptotic 
value.) 

(4) For p held constant at a value p >0, 
R(m, p) is an increasing function of m that in- 
creases at a decreasing rate. 

Examination of Table 2 leads to similar ob- 
servations and conjectures about a cardinality- 
based semi-greedy C-W heuristic. In particular, 
items (1) and (4) above remain valid with p re- 
placed everywhere by c ~and p > 0 replaced by 
c > 1. Item (2) also remains valid, except that it 
takes about five repetitions (instead of two) until 
the greedy C-W heuristic performs worse than a 
semi-greedy C-W heuristic for at least one value 
of c. A significant contrast occurs with respect to 
item (3). For a percentage-based semi-greedy C-W 
heuristic, the optimal value of p increases from 
p - 0  for m - l ,  to p - I  for 2.q<m<3, to p - 2  
for 4 < m ~ 7 ,  to p - 3  for 8 < m < 1 1 ,  to p = 4  
for 12 .q< m < 50. In contrast, from Table 2, we see 
that, for a card/nality-based senti-greedy heuristic, 

c -  2 replaces c - 1  as optimal after about five 
iterations and remains optimal by a wide margin 
through m = 50. Thus, c = 2 appears to introduce 
just the right amount of variety into the C-W 
heuristic, whereas c > 2  introduces too much 
variety if only 50 repetitions will be performed. 

The above observations and conjectures are 
based on a random sample of 50 data sets having 
the attributes of 50 locations, a Euclidean distance 
metric, and a distance noise factor of e - 0.10. The 
observations and conjectures are also supported 
by the tables similar to Tables 1 and 2 obtained 
when the number of locations was varied, the 
distance metric was changed to the rectangular 
metric, and the distance noise factor was varied. 
Empirical evidence (not reported here) suggests 
that varying one attribute (number of locations, 
distance metric, or distance noise hctor) while 
keeping the others the same has the following 
effects: 
- If m is fixed, the optimal value of p for a 

percentage-based semi-greedy C-W heunstic 
decreases as the number of locations increases. 
For example, when the Euclidean metric was 
used, the noise factor was e -  0.10, and the 
number of locations was 10, 25, 50, 75 and 100,. 
the respective optimal values of p for m -  50 
were p -  13, 5, 4, 2 and 1, respectively. 
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The distance metric (Euclidean or rectan~0~ular) 
has no discernible effect on the empirical re- 
sults. 
If m and p are fixed, R(m, p )and  D(m, p) 
increase as the noise factor increases. For exam- 
ple, when the number of locations was 50, the 
Euclidean metric was used, and the noise factor 
c was 0, 0.05, 0.1, 0.50 and 0.99, the respective 
values of R(50, 4) were 3.79, 4.22, 5.05, 6.94 
and 10.83, and the respective values of D(50, 0) 
were 5.93, 5.85, 6.67, 9.87 and 15.41. Thus, as 
the distances between locations become less 
and less related to the locations' grid-coordi.- 
nares, use of a semi-greedy C-W heuristic be- 
comes more and more attractive as an alterna- 
tive to a greedy C-W heuristic. 

5. Concluding remarks 

The question of whether to perform several 
repetitions of a semi-greenly C-W heuristic or a 
single repetition of the greedyC-W heuristic must 
be answered in the context of the trade-off be- 
tween the benefit obtained by an improved objec- 
tive value versus the cost of the i=ncreased compu- 
tational effort. Our empirical evidence indicates 
that the increased computational effort is negligi- 
ble, primarily because the savings S~j do not re- 
quire resorting at every repetition. 

More specifically, our experiments were con- 
ducted in FORTRAN on an IBM PC-XT equipped 
with an 8087 numeric coprocessor. Sorting was 
performed using a quicksort routine outlined by 
Kernighan and Plauger [8], with an enhancement 
made to avoid the worst case running time. For a 
problem with 100 locations, the mean time (over 
50 data sets) to sort the savip~.~ .~,j was 4.54 
minutes, and the mean executic~ tin for one 
repetition of a percentage-based se:,fi-greedy heur- 
istic was 0.20 minutes. Thus, whereas a single 
repetition of the greedy C-W heuristic requires an 
average of 4.54 + 0.20 ffi 4.'14 minutes, 50 repe- 
titions of the semi-greedy C-W heuristic requires 
an average of 4.54 +(50)(0.20)-14.54 minutes. 
This investment of about 10 minutes of execution 
time was rewarded with a reduction of 4% in the 
objective value. Note that, if the savings S~j must 
be resorted for every repetition, as is the case for 
the C-W heuristic modified by the use of the 
route shape parameter of Golden, Magnanti and 

Nguyen, then the mean execution time for a prob- 
lem with 100 locations would be appro~mately 50 
(4.54 + 0.20)= 237 minutes or almost four hours. 
Thus, it is significantly less time-consuming to 
introduce variety into the C-W heuristic by ex- 
ecuting 50 repetitions of a rsemi-greedy C-W heur- 
istic than executing the approach of Golden et al. 
with 50 different route shape parameters. 

The question of whether one should employ a 
percentage, based semi-greedy C-W heuristic or a 
cardinality-based semi-greedy C-W heuristic has 
no definitive answer. For examples our empirical 
results (as illustrated by Tables 1 and 2) indicate 
that a fixed number of repetitions of a percentage- 
based semi-greedy C-W heuristic using the opti- 
mal value of p yields a better objective value than 
an equal number of repetitions of a cardinality- 
based C-W heuristic with the optimal value of c. 
However, whereas c- -2  was optimal for all ex- 
periments, p 's optimal value depended on such 
things as the number of repetitions and the num- 
ber of locations. Hence, it may be better to use a 
cardinality-based semi-greedy C--W heuristic with 
c = 2 than to use a percentage-based semi-greedy 
heuristic with a non-optimal value of p. 

Unanswered questions include the following: 
- Although there exists a semi-greedy version of 

any greedy heuristic, are Section 4's observa- 
tions and conjectures supported by empirical 
evidence gathered from experiments with other 
types of problems? We have performed experi- 
ments using a semi-greedy variant of the 'greedy 
close' heuristic applied to the uncapacitated 
facility location problem. The empirical evi- 
dence supports Section 4's observations and 
conjectures. What about other types of prob- 
lems (e.g., set covering)? 

- Which of Section 4's observations and conjec- 
tures can be formally proved? 

- In addition to being used as a 'stand-alone' 
technique, how useful will a semi-greedy heuris- 
tic be in the context of a branch-and-bound 
algorithm? For example, many branch-and- 
bound algorithms based on Lagrangian relaxa- 
tion use a greedy heuristic to convert (when 
necessary) each optimal solution to be relaxed 
problem into a primal feasible solution, thereby 
obtaining an upper bound on the primal's ob- 
jective value (when' minimizing). With the use 
of a semi-greedy heuristic, it m~ght be possible 
to quickly identify several upper bounds from 
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the same primal infeasible solution. 
We intend to explore these and others issues in 

future research. 
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